
LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 1 of 16

TABLE OF CONTENTS

1.0 PURPOSE, SCOPE, AND APPLICABILITY .. 1
2.0 KEY DEFINITIONS AND ACRONYMS .. 6
3.0 SSC SOFTWARE DESIGN REQUIREMENTS (INPUT) .. 6
4.0 SSC SOFTWARE DESIGN (OUTPUT) ... 8
4.1 General Software Design Requirements .. 8
4.2 Software System Architectural Design ... 10
4.3 Software Requirements Specification (SWRS) .. 11
4.4 Software Architectural Design ... 11
4.5 Software Detail Design .. 11
4.6 Software System Hazard Analysis and Mitigation .. 12
4.7 Software Design Traceability and Testability ... 13
4.8 Operations and Maintenance (O&M) Instructions .. 13
4.9 SOFT-GEN Requirements and Deliverables.. 13
5.0 SSC SOFTWARE COMPUTER PROGRAM LANGUAGE (CODE) 13
6.0 NON-SSC SOFTWARE DESIGN REQUIREMENTS (INPUT) 14
7.0 NON-SSC SOFTWARE DESIGN (OUTPUT) .. 15
8.0 NON-SSC SOFTWARE PROGRAM LANGUAGE (CODE) 16

 REFERENCE: SOFTWARE DESIGN DOCUMENTATION EXAMPLE

Rev Date Description POC RM

0 06/23/16 Initial issue Tobin Oruch,
ES-DO

Mel Burnett,
CENG-OFF

1 05/25/17 Added design output clarifications;
other minor editorial clarifications.

Tobin Oruch,
ES-DO

Lawrence Goen,
ES-DO

1.0 PURPOSE, SCOPE, AND APPLICABILITY

This section describes the “how, when, and who” for designing (developing) software. See
Tables 21.3-1 and 21.3-2 for a summary of this section for SSC software and Non-SSC software
respectively.

See Chapter 21 applicability in SOFT-GEN. In addition:

 This section does not apply to “simple and easily understood” software used in the design of
SSCs if individually verified as described in SOFT-V&V.

 See SOFT-V&V for required verification and validation activities and deliverables for
designed software.

 See SOFT-GEN for additional requirements that apply during design.

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 2 of 16

 Also see SOFT-ACQUIRE for acquisition requirements associated with software that is
designed for LANL (this section and SOFT-ACQUIRE may apply.)

 Users must tailor SOFT-DESIGN or do not use for some SSC software (e.g., that’s
embedded) or when acquiring as-is (e.g., off-the-shelf)

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 3 of 16

Table 21.3-1 SOFT-DESIGN Section Summary for SSC Software

(This table is a summary only and does not include all requirement details. See text for details.)

Activity
No.

SQM
Activity

ML1 Implementation Detail Reference

1, 2 3, 4 How When Who2, 3 ESM Ch. 21 Ref.
Section4

1 Develop
software
design
requireme
nts (input)

R Gr Develop software design input
deliverables:
o SSC drawings (e.g., PFDs, P&IDs,

SOOs, hardware/instrument
location drawing, location drawing,
instrument/device list).

o SSC performance specification
o FDD or SDD
o Other SSC design inputs/outputs

as required

 Earliest practical
time

 60%, 90%, 100%
SSC detail design

 Prior to software
design as much as
practical

 SSC DA (D, R, A)
 LANL SRLM (R,

A)
 FDAR (R, A)

SOFT-DESIGN, 3

2 Design the
software
(output)

R Gr Design the software (output)
deliverables:
o software specification (SWRS)
o software design (SWDD)
o software system hazard analysis

and mitigation documentation
(SWHA)

o software design traceability
documentation (SWTM)

o operations and maintenance
(O&M) instructions

o SOFT-GEN deliverables
o Other software design deliverables

as required

 Earliest practical
time
 If in scope of SSC

design, software
requirements
(draft) at 30%
design submittals,
firmed up at 60%.

 If not in scope of
SSC design, then
in detail design
submittals

 Prior to software
coding as much as
practical

 SD (D, R, A)
 SRLM (R, A)
 LANL SRLM (R,

A)

SOFT-DESIGN, 4

3 Translate
the
software
design
into
computer
program
language

R Gr Develop computer program language
(code):
o data structures/files,
o source code (where feasible),
o executable code
 Provide computer program listings

(e.g., pdf printout of source code)

 Earliest practical
time

 Prior to final
acceptance testing

 SD (D, R, A)
 SRLM (R, A)

SOFT-DESIGN, 5

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 4 of 16

Table 21.3-1 SOFT-DESIGN Section Summary for SSC Software
(This table is a summary only and does not include all requirement details. See text for details.)

Activity
No.

SQM
Activity

ML1 Implementation Detail Reference

1, 2 3, 4 How When Who2, 3 ESM Ch. 21 Ref.
Section4

1 ML = Associated Management Level per Form 2033. R = Required. Gr = Required but graded.
2 D = Develop or implement; R = Review; A = Approve.
3 SSC DA = Design agency for SSC that is associated with the software); SRLM = Software Responsible Line Manager (prior to turnover to LANL). LANL SRLM
= SRLM after turnover to LANL. FDAR = Facility Design Authority Representative.

4 Ref. = ESM Chapter 21 section name and subsection number (e.g., section SOFT-GEN, subsection 3, Software Identification and Determination).

Table 21.3-2 SOFT-DESIGN Section Summary for Non-SSC Software
(This table is a summary only and does not include all requirement details. See text for details.)

Activity
No.

SQM
Activity

ML1 Implementation Detail Reference

-1, -2 -3, -4 How When Who2, 3 ESM Ch. 21 Ref.5

1 Develop
software
design
requireme
nts (input)

R Gr Develop system requirements (input)
specification (SWYRS)

 Earliest practical
time

 Prior to software
design as much as
practical

 SO (D, R, A)
 SRLM (R, A)
 FDAR (R, A)

SOFT-DESIGN, 6

2 Design the
software
(output)

R Gr Design the software (output)
deliverables:
o software specification (SWRS)
o software design (SWDD)
o software system hazard analysis and

mitigation documentation (SWHA)
o software design traceability

documentation (SWTM)
o operations and maintenance (O&M)

instructions
o SOFT-GEN deliverables
o Other software design deliverables as

required
o Computer model mathematical terms4

 Earliest practical
time

 Prior to software
coding as much as
practical

 SD (D, R, A)
 SRLM (R, A)

SOFT-DESIGN, 7

http://int.lanl.gov/tools/forms/numerical.shtml
http://engstandards.lanl.gov/index.shtml
http://engstandards.lanl.gov/index.shtml

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 5 of 16

Table 21.3-2 SOFT-DESIGN Section Summary for Non-SSC Software
(This table is a summary only and does not include all requirement details. See text for details.)

Activity
No.

SQM
Activity

ML1 Implementation Detail Reference

-1, -2 -3, -4 How When Who2, 3 ESM Ch. 21 Ref.5

3 Translate
the
software
design
into
computer
program
language
(code)

R Gr Develop computer program language
(code):
o data structures/files,
o source code (where feasible),
o executable code
 Provide computer program listings (e.g.,

pdf printout of source code)

 Earliest practical
time

 Prior to final
acceptance testing

 SD (D, R, A)
 SRLM (R, A)

SOFT-DESIGN, 8

1 ML = Associated Management Level per Form 2033. R = Required. Gr = Required but graded.
2 D = Develop or implement; R = Review; A = Approve.
3 SO = Software Owner. SRLM = Software Responsible Line Manager. FDAR = Facility Design Authority Representative.
4 Applicable to computer program models only.
5 Ref. = ESM Chapter 21 section name and subsection number (e.g., SOFT-GEN, Subsection 3, Software Identification and Determination).

http://engstandards.lanl.gov/index.shtml
http://int.lanl.gov/tools/forms/numerical.shtml
http://engstandards.lanl.gov/index.shtml

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 6 of 16

2.0 KEY DEFINITIONS AND ACRONYMS

See Chapter 21, SOFT-GEN for key definitions and acronyms.

3.0 SSC SOFTWARE DESIGN REQUIREMENTS (INPUT)

Define, control and verify the design. This section describes the minimum requirements, activities and
deliverables for preparing SSC software design requirements (i.e., inputs). SSC software design
requirements are the information provided to the SSC software designer to design the SSC software.

A. How.

1. SSC software design requirement (input) deliverables depend on the nature,
complexity and associated ML of the software. Use Table 21.3-3, SSC
Software Design Requirement (Input) Deliverables and direction from the
LANL SRLM as a guide to define software design requirement deliverables.

2. Process and retain input documentation in accordance with the SRLM’s
governing document control and records management process. Ensure the
correct SWID (obtained when completing Form 2033) is part of the
documentation record number. See AP-341-402, Engineering Document
Management in Operating Facilities for details.

3. SSC software design requirements (inputs) must:

a. Be identified and documented using a systems engineering process
(Ref. P341, Facility Engineering Processes Manual and ESM
Chapter 20 (pending publication)).

b. Be documented as part of the SSC design documents (e.g., Process
and Instrumentation drawings (P&IDs) with Sequence of Operations
(SOOs), system specifications, system design descriptions (SDDs)).

c. Be based on upper tier performance and functional requirements.

d. Identify the operating system, function, interfaces, performance
requirements, installation considerations, applicable SSC design

Table 21.3-3 SSC Software Design Requirement (Input) Deliverables

No Deliverable
Apply by ML1

1, 2 3 4

01

SSC System Drawings (e.g., process flow diagrams (PFDs) process
and instrumentation diagrams (P&IDs), Sequence of Operations
(SOOs), hardware/instrument location drawing, network drawing2,
instrument/device list.)

R Gr Gr

02 SSC performance specification R Gr Gr

03 SSC Facility Design Description (FDD) and/or System Design
Description (SDD) R Gr -

04 Other SSC Design inputs/outputs as required to support software
design3 R Gr -

1 R = As required by ESM Chapter 1, General, Section Z10 or other ESM chapters; Gr = Required but graded
per Section Z10 or other ESM chapters. “-“ = Not required.

2 Level of detail as required by FDAR; e.g., a notional or "block" diagram of the network as a minimum,
detailed technical drawing later.

3 As determined by LANL SRLM; may include SSC hazard analyses, Requirements Criteria Document
(RCD), identification of commercial grade dedication (CGD) critical characteristics etc.

https://coe.lanl.gov/APs/default.aspx
https://int.lanl.gov/policy/management-systems.shtml
http://engstandards.lanl.gov/index.shtml
http://engstandards.lanl.gov/index.shtml
http://engstandards.lanl.gov/index.shtml
http://engstandards.lanl.gov/index.shtml

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 7 of 16

inputs, critical characteristics (as applicable), and design constraints
of the computer program.

e. Specify technical and software engineering requirements, including
security features.

f. Identify applicable reference drawings, specifications, codes,
standards, regulations, procedures, or instructions that establish test,
inspection, and acceptance criteria.

g. Be commensurate with the risk of unauthorized use; address security
requirements (e.g., vulnerability/cyber-security protections).

h. For ML-1 through ML-3 software, be traceable throughout the
software life cycle.

i. For ML-1 through ML-3 software, be based on system/component
hazard analyses that identify system/component risks and the means
for controlling them.

j. The software design shall consider the computer program’s
Operating Environment (see Definitions in SOFT-GEN).1

k. Identify and address the user human machine interface (HMI)
requirements. Factor in existing user operational protocols,
conventions and methods by users/operators. As appropriate,
specify prototypes/HMI screenshots for review and comment as part
of the design deliverables.

l. Ensure software design requirements, as applicable, are consistent
with SSC technical baseline documents. For information on SSC
software technical baseline documents, see STD-342-100,
Engineering Standards Manual, Chapter 1, Section Z10, General;
AP-341-616, Technical Baseline Change During Design; and AP-
341-405, Identification and Control of Technical Baseline, Variances,
Alternate Methods, and Clarifications in Operating Facilities.

m. Ensure the design inputs and sources are identified and
documented, specified on a timely basis, translated into design
documents, and their selection review and approved.

n. Include user-level input/review of screen shots, prototypes, etc.

4. For guidance, see:

 IEEE Std 1233, IEEE Guide for Developing System Requirements
Specifications, and

 ISO/IEC/IEEE 29148, Systems and Software Engineering-Life Cycle
Processes-Requirements Engineering.

B. When. Develop software design requirements at the earliest practical time and as
much as practical, prior to software design. As applicable, submit software requirements
(draft) at 30% design submittals, firmed up at 60%.

C. Who. For SSC software, the SSC Design Agent (or Design Agency [DA]) that
develops the SSC detailed design also develops, reviews, and approves the SSC

1 An integral part of software design is the design of a computer program that is part of an overall
system. ASME NQA-1a-2009, Part II, Subpart 2.7-402

http://engstandards.lanl.gov/index.shtml
https://coe.lanl.gov/APs/default.aspx
https://coe.lanl.gov/APs/default.aspx
https://coe.lanl.gov/APs/default.aspx
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 8 of 16

software design requirements. The LANL SRLM and FDAR review and approve the
software requirements.

4.0 SSC SOFTWARE DESIGN (OUTPUT)

A. How.

B. When. Design software at the earliest practical time and as much as practical, prior to
software coding. Unless the software design is deferred to subcontractors, submit
software design deliverables with the 90% and 100% detail designs. If software
design is deferred, then specify and submit software design deliverables as part of
the required submittal process.

C. Who. The SD develops, reviews and approves the deliverables of this section
including the architectural design, software specification, detail design, hazard
analysis and mitigation documentation, and design traceability documentation; the
SD, SRLM (prior to turnover to LANL), and LANL SRLM review and approve.

4.1 General Software Design Requirements

A. Software design is an expanding and complex area. Accordingly, this section is
limited to providing only a high-level description of the software design output
requirements. For additional detail, see:

 DOE-STD-1195, Design of Safety Significant Safety Instrumented Systems
Used at a DOE Nonreactor Nuclear Facilities

 ANSI/ISA 84.00-01, Functional Safety: Safety Instrumented Systems for the
Process Industry Sector;

 ANSI/IEEE std. 7-4.3.2, IEEE Standard Criteria for Digital Computers in Safety
Systems of Nuclear Power Generating Stations,

 IEEE Std 1016, IEEE Standard for Information Technology – System Design –
Software Design Descriptions2

 IEEE Std 1016.1, IEEE Guide to Software Design Descriptions

 ESM Chapter 8: Instrumentation and Controls

B. Design software to meet the software requirements and deliverables of this section,
SOFT-DESIGN, and other ESM chapters as applicable. Design deliverables may be
combined as needed in one or more documents.

C. Use an accepted design methodology (see IEEE Std 1016.1).

D. As specified by the LANL SRLM for ML-1 and ML-2 software, require and provide
software designer and computer programmers (coders) qualifications commensurate
with the risk associated with the software. Refer to P781-1, Conduct of Training for
processes to determine qualifications.

E. Document the software design and the computational sequence necessary to meet
the software requirements including as applicable: numerical methods, mathematical
models, physical models, control flow, control logic, data flow, process flow, data
structures, supporting calculations (Ref. AP-341-605, Calculations), software
baseline, process structures, and the applicable relationships between data
structures and process structures. Combine with the documentation of the software

2 Flow diagrams, charts and/or pseudo-code should be provided.

http://energy.gov/ehss/downloads/doe-std-1195-2011
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://engstandards.lanl.gov/index.shtml
http://www.lanl.gov/library/find/standards/index.php
http://int.lanl.gov/policy/human-resources.shtml
https://coe.lanl.gov/APs/default.aspx

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 9 of 16

design requirements, or the computer program listings (e.g., pdf printout of source
code, see definitions) resulting from implementation of the design.

F. Ensure software design outputs, as applicable, are consistent with SSC technical
baseline documents.

G. Software design (output) deliverables depend on the nature, complexity and
associated ML of the software. See SOFT-DESIGN References for examples.
Deliverables consist of drawings and/or other descriptive documents. They may be
combined in one or more documents or provided separately. Software design
deliverables may be divided into the following categories: (a) software design
documentation (system architecture, software architecture, software detail design
collectively referred to as SWDD), (b) Software Requirements Specification (SWRS),
(c) hazard analysis and mitigation documentation (SWHA), (d) software design
traceability documentation (SWTM), (e) O&M documentation, (f) SOFT-GEN
deliverables, and (g) other software deliverables.

Note: Verification and Validation (V&V) documentation, including test plans, interim
test reports, and design review documentation, are typically produced concurrent with
the design. See SOFT-V&V.

H. Provide associated software deliverables as required by other ESM chapters (e.g.,
Chapter 8 for instrumentation and control systems).

I. Provide design deliverables per Table 21.3-4, Software Design (Output) Deliverables.

J. Ensure the design is defined, controlled and verified; the design interfaces are
identified and controlled; design adequacy is verified by individuals other than those
who designed the software. Guidance: The eventual system engineer and/or users
should work with the design/development team to ensure documentation etc. is done
to an appropriate level commensurate with the ML of the software/SSC.

K. Ensure design documentation and records include not only final design documents,
such as drawings and specifications, and revision to those documents, but also
documentation that identifies the important steps in the design process, including
sources of design inputs.

L. As applicable, address use and maintenance requirements in the design (e.g.,
access controls and/or computer system vulnerability protections) per SOFT-MAINT.

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 10 of 16

M. Retain documentation in accordance with the governing records management

process. For ES-Div Non-SSC software and SSC software, ensure the correct SWID
(obtained when completing Form 2033) is part of the documentation record number.
See AP-341-402 for details.

4.2 Software System Architectural Design

A. Develop the software system architectural design. Allocate system-level
requirements to hardware, software, and interfaces of the system.

B. For ML-1, ML-2, and some ML-3 systems where software operational complexity and
lifecycle maintenance can be disadvantageous, evaluate and as appropriate, employ
designs that use no or minimal software.

C. Sufficiently detail the system architectural design such that a person technically
qualified in the subject can verify and validate (V&V) that the design satisfies
requirements without recourse to the Software Designer (SD).

D. Consider the following concepts, as applicable, in the software system architectural
design.

1. Isolation: Critical elements should be separated from each other to preclude
undefined and/or unintended interactions. For ML-1 through ML-3 software,
safety systems should be separated from non-safety systems where
possible. Barriers (e.g., separation of safety from non-safety modules) should
be used to prevent non-safety functions from interfering with safety functions.

Table 21.3-4 Software Design (Output) Deliverables

No Design Deliverable Element
Apply by ML1

1, 2 3 4

01 Software system architecture design2 R Gr Gr

02 Software requirements specification (SWRS)2 R Gr -

03 Software architecture design2 R Gr Gr

04 Software detail design2 R Gr -

05 Software system hazard analysis and mitigation docs. (SWHA)2 R Gr -

06 Software design traceability documentation (e.g., SWTM)2 R Gr -

07 Computer Program Listings, including the program (design product)2 R Gr -

08 Operations and maintenance (O&M) instructions R R R

09 SOFT-GEN deliverables3 See SOFT-GEN

10 Other software design deliverables4, 5 See LANL SRLM and
other ESM chapters.

1 R = Required; Gr = Required but graded; “-“ = Not required.
2 May be combined in one or more documents or provided separately.
3 Required and graded based on the nature, complexity and associated ML per direction from the LANL
SRLM.

4 Includes software list, Form 2033, software data sheet, software baseline.
5As determined by LANL SRLM and/or as required in other ESM chapters (e.g., Human Machine Interface
(HMI) graphical layouts/slides). See SOFT-V&V for associated V&V deliverables.

6 See ESM Chapter 8 for software related deliverables (e.g., logic diagrams, loop diagrams, point list
tables, etc.) specific to instrument and control (I&C) system designs.

https://coe.lanl.gov/APs/AllAPs/Forms/APbyNumber.aspx
http://int.lanl.gov/tools/forms/numerical.shtml
http://engstandards.lanl.gov/index.shtml
http://engstandards.lanl.gov/index.shtml

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 11 of 16

Consider use of different platforms, power supplies, inputs/outputs to
physically separate the safety from non-safety elements.

2. Independence/Diversity: For ML-1 and ML-2 software, independent,
diverse systems should be employed. These are systems where the stimuli
originate from and are handled by separate elements with different designs,
independent hardware inputs and/or independent software modules.

Note: Because different manufacturers may use the same processor or
software, common mode failures may not be averted simply by acquiring
from several manufacturers.

3. Fail-Safe Design: Design such that the system remains in a safe mode
upon failure without compromising isolation features or other safety
functions.

4. Incompatibility/Longevity: Design to ensure integrated hardware-software
compatibility as much as possible throughout the life-cycle of the system.

4.3 Software Requirements Specification (SWRS)

A. For software system requirements that are allocated to software, further refine the
requirements and develop software-level requirements. Document the software
requirements. Software requirements are documented in a software requirements
specification (SWRS). See IEEE Std 830, IEEE Recommended Practice for Software
Specifications for guidance.

4.4 Software Architectural Design

A. Transform the software requirements into the software architectural design. The
software architecture design specifies the structures of the software and the various
software components, interactions and interfaces between the software components.

B. Include the high-level design for the external interfaces between the software
components and other components within the system (hardware and human
interface) and between the software and entities outside the system.

C. Sufficiently detail the software architectural design such that a person technically
qualified in the subject can V&V the design without recourse to the SD.

D. Where appropriate and/or as required by the software requirements document,
design software control functions that are performed incrementally rather than in a
single step to reduce the potential that a single failure of a software element can
cause an unsafe system state.

E. Where appropriate and/or as required by the software requirements document,
design built-in fault detection and self-diagnostics that detect and report software
faults and failures in a timely manner and allow actions to be taken to avoid an
impact on the system’s safe operation.

4.5 Software Detail Design

A. For ML-1 through ML-3 software, define the internals of each software component
down to individual software modules that can be coded.

B. Specify/document the software coding standards and/or conventions.

C. As applicable, include data structures/databases and external interfaces.

http://www.lanl.gov/library/find/standards/index.php

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 12 of 16

D. Sufficiently detail the detailed software design to: (a) allow a person technically
qualified in the subject to V&V the design without recourse to the SD; and (b) allow
computer programmers to code the design without undue difficulty.

4.6 Software System Hazard Analysis and Mitigation

A. For ML-1 through ML-3 software, conduct and document a software hazard analysis
at the system and component level to identify software risks and develop mitigating
approaches for controlling them. Potential failures should be identified and evaluated
for their consequences of failure and probability of occurrence. Some potential
problems may include (1) complex or faulty algorithm, (2) lack of proper handling of
incorrect data or error conditions, (3) buffer overflow, and (4) incorrect sequence of
operations due to either logic or timing faults.

B. Ensure the software hazard analysis is consistent with the system safety
documentation for the associated facility. See SBP111-1, Facility Hazard
Categorization and Documentation for associated facility safety documentation.

C. For ML-1 and ML-2 software, perform and document the hazard analysis based on
recognized consensus standards. See ESM Chapter 8, Instrument & Controls for
application of hazard analysis/mitigation with respect to the following standards for
SSC software:

 ANSI/Instrumentation, Systems, and Automation Society (ISA) S84.00.01,
Functional Safety: Safety Instrumented Systems for the Process industry Sector;
and,

 ANSI/IEEE Std 7-4.3.2, IEEE Standard Criteria for Digital Computers in Safety
Systems of Nuclear Power Generating Stations).

D. For ML-3 software, standard-based methods or less formal methods should be used
using a graded approach (e.g., failure modes and effects analysis, fault-tree
modeling, event-tree modeling, cause-consequence diagrams, hazard and operability
analysis, and interface analysis).

E. For ML-4 software, a hazard analysis is not required but may be performed.

F. Multiple/common-cause failures should be evaluated in the hazard analysis.

Note: Failure mode and effect analysis (FMEA) approaches, when used alone, do
not address multiple failures/common-cause failures. (ANSI/ISA 84.00-01-2004-
Part 1 and IEEE STD-7-4.3.2-2003 provide guidance.)

G. The hazard analysis and design must include analysis and possible problems with
the computer program’s operating environment (including security environment) and
external and internal abnormal conditions and events that can affect the computer
program.

H. In the software design documentation (SWDD), as part of the SWHA, or in a separate
deliverable, provide documentation that shows how the consequences of
hazards/problems are mitigated. Mitigation strategies should be included for:

1. Software standard hazards (i.e., the basic hazards associated with the
software or process);

2. Software system failures (i.e., the functionality written into the software itself
to protect from failure); and

http://int.lanl.gov/org/padops/adnhho/safety-basis/_subpages/policies-procedures-tech-bulletins.shtml
http://engstandards.lanl.gov/ESM_Chapters.shtml#esm8
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 13 of 16

3. Software system overrides (i.e., the functionality written into the software to
keep a user or other system from bypassing the safety features within the
software item.)

4.7 Software Design Traceability and Testability

A. For ML-1 and ML-2 software, document traceability from the software design
requirements to the software design deliverables. For ML-3 software, a software
traceability matrix (SWTM) is recommended to document traceability. Other methods
however, such as tracing the requirement within the design deliverable are also
acceptable. Requirements tools and/or databases may be used.

B. For large, complex ML-1 and ML-2 software, consider bi-directional traceability
(tracing from the requirements to the design as well as from the design to the
requirements) to identify functionality that may have been inadvertently added without
requirement drivers.

C. Design the software and the associated SSC such that the requirements can be
readily tested.

4.8 Operations and Maintenance (O&M) Instructions

A. Develop and provide operations and maintenance (O&M) instructions to use and
maintain the computer program(s). See SOFT-MAINT for use and maintenance
requirements and address in the O&M instructions and/or the SWDS.

B. Sufficiently detail the O&M instructions to allow an individual trained in the use of
such software to follow the instructions and use the program without undue difficulty
and/or probability of misuse.

C. For ML-1 and ML-2 software, O&M instructions should be developed using standard
conventions for instructions (e.g., ANSI/IEEE Std 26514, Systems and Software
Engineering – Requirements for Designers and Developers of User Documentation).

4.9 SOFT-GEN Requirements and Deliverables

Satisfy software requirements and provide deliverables as described in SOFT-GEN.

5.0 SSC SOFTWARE COMPUTER PROGRAM LANGUAGE (CODE)

A. How.

1. Translate the software design into computer program language (code).

2. For ML-1 through ML-3 software, use standards and/or conventions as
approved in the software design (e.g., IEEE Std 1666, IEEE Standard for
Standard System C Language Reference).

3. Develop source code suitable for compilation or translation.

4. Provide both source code and/or executable code as deliverables. If source
code cannot be provided (e.g., for proprietary reasons), then provide
objective evidence that the source code was V&V’d as per IEEE Std. 1012
and/or acceptable methods.

5. For ML-1 and ML-2 software, provide computer program listings (see
definitions).

6. Code should be developed to sufficient detail and clarity to allow someone
technically qualified in the computer programming language to review,

http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php
http://www.lanl.gov/library/find/standards/index.php

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 14 of 16

understand, and verify it meets the software design requirements without
recourse to the SD and/or coder.

7. For ML-1 and ML-2 code, ensure most code lines have explanatory
notes/comments (pseudo code) to support future troubleshooting, bug fixes,
and/or system modifications.

8. Employ configuration management (including computer program code
labeling) and problem reporting/corrective management in accordance with
SOFT-GEN.

B. When. Develop code at the earliest practical time and prior to final program
acceptance testing.

C. Who. The SD develops, reviews and approves the software code; the SRLM reviews
and approves the code.

6.0 NON-SSC SOFTWARE DESIGN REQUIREMENTS (INPUT)
Guidance: Unlike SSC software, Non-SSC software typically does not use upper level SSC
design documents (e.g., P&IDs, SOOs, SDDs) for design input. Therefore, the design input
is communicated through other documentation. A system requirements specification
(SWYRS) is used to convey upper level design inputs analogous to the upper-level SSC
design documents. A software requirements specification (SWRS) is developed for software
system requirements that are allocated to software. The SWRS further refines the
requirements and develops software-level requirements. For designs where software is
relatively low in complexity, where the software requirements constitute most of the system
requirements, and when allowed by the LANL SRLM, the SWYRS and SWRS may be
combined.

A. How.

1. Using a graded approach for ML1 through ML-4 associated software,
develop a system requirements specification (SWYRS). The SWYRS is a
document that communicates the requirements of the customer to the
technical community who will further specify and build the software.

For ML-4 software, the calculation associated with the software may be used
to convey the software requirements in lieu of the SWYRS and/or SWRS.

For ML-1 through ML-3 software, the requirements may be directly included
in the SWDS.

See the following for SWYRS guidance:

 ISO/IEC/IEEE 29148, Systems and Software Engineering-Life Cycle
Processes-Requirements Engineering.

2. The SWYRS must:

a. Be identified and documented using a systems engineering process
(Ref. P341, Facility Engineering Processes Manual and ESM
Chapter 20 [pending publication]).

b. Identify the operating system and other aspects of Operating
Environment, function, interfaces, performance requirements,

http://www.lanl.gov/library/find/standards/index.php
https://int.lanl.gov/policy/documents/P341.pdf
http://engstandards.lanl.gov/index.shtml

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 15 of 16

installation considerations, applicable design inputs, and design
constraints of the computer program.

c. Specify technical and software engineering requirements, including
security features.

d. Identify applicable reference drawings, specifications, codes,
standards, regulations, procedures, or instructions that establish test,
inspection, and acceptance criteria.

e. Be commensurate with the risk of unauthorized use; address security
requirements (e.g., vulnerability/cyber-security protections).

f. For ML-1 through ML-3 software, be traceable throughout the
software life cycle.

g. For ML-1 through ML-3 software, be based on system/component
hazard analysis that identifies system/component risks and the
means for controlling them.

B. When. Develop the SWYRS at the earliest practical time and where practical, prior to
software design.

C. Who. The SO develops the SWYRS and the SO (e.g., with assistance of SD); SRLM
and FDAR review and approve the SWYRS.

7.0 NON-SSC SOFTWARE DESIGN (OUTPUT)

A. How.

1. For ML-4 software, the calculation associated with the software may be used
to convey the software design output deliverables.

For ML-1 through ML-3 software, the design output may be included in the
SWDS.

2. See SSC Software design Subsection 4 and note that SSC-related text
and/or references do not apply. For example, the following are not
applicable:

a. Integration of design outputs with SSC technical baseline documents
(4.1.F)

b. Provide associated software deliverables or use associated software

standards as required for SSCs as stated by other ESM chapters
(4.1.B and 4.6.C).

3. Non-SSC software can include computer models. There are various

definitions for models. From EPA/100/K-09/003, models are simplifications of
the real world constructed to gain insights into select attributes of a particular

LANL Engineering Standards Manual STD-342-100 Chapter 21 – Software

3 Section SOFT-DESIGN: Software Design Rev. 1, 05/25/17

Page 16 of 16

physical, biological, economic, engineered, or social system.3 From LA-
14167-MS, The Mathematical Model comprises the conceptual model,
mathematical equations, and modeling data needed to describe the Reality
of Interest. The Mathematical Model will usually take the form of the partial
differential equations (PDEs), constitutive equations, geometry, initial
conditions, and boundary conditions needed to describe mathematically the
relevant physics. The Reality of Interest represents the physical system for
which data is being obtained.4 For computer model design, also include the
following:

a. A description of the conceptual model for the problem to be solved.

Include assumptions, algorithms, relationships and data.

b. The mathematical terms that describe the conceptual model. Include

mathematical equations, boundary values, initial conditions, and
modeling data as required. Include numerical solution techniques
such as finite element and finite difference when equations
describing the mathematical model cannot be solved analytically.

c. Guidance: Use ANSI/ANS-10.7, Non-Real-Time, High-Integrity

Software for the Nuclear Industry – Development Requirements as a
guide.

B. When. Design software at the earliest practical time and as much as practical, prior to

software coding.

C. Who. The SD develops, reviews, and approves the software design; the SO and
SRLM review and approve the design.

8.0 NON-SSC SOFTWARE PROGRAM LANGUAGE (CODE)

See Subsection 5.

REFERENCE: SOFTWARE DESIGN DOCUMENTATION EXAMPLES

Examples provided are for informational purposes only and have not been reviewed for compliance to
the requirements of this chapter. Better examples will be posted as they become available.

At time of writing, examples included:
Software Requirements Specification (SRS) Example (Source Tracker)
Design Document Example for Designed Software (Source Tracker)
User Manual (O&M instructions) for Designed Software (Source Tracker)

3 EPA/100/K-09/003, Guidance on the Development, Evaluation, and Application of Environmental Models.
4 LA-14167-MS, Los Alamos National Laboratory, Concepts of Model Verification and Validation, Thacker et al.,
2004.

http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/LosAlamos_VerificationValidation.pdf
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/LosAlamos_VerificationValidation.pdf
http://www.lanl.gov/library/find/standards/index.php
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/LosAlamos_VerificationValidation.pdf

	1.0 PURPOSE, SCOPE, AND APPLICABILITY
	2.0 KEY DEFINITIONS AND ACRONYMS
	3.0 SSC SOFTWARE DESIGN REQUIREMENTS (INPUT)
	4.0 SSC SOFTWARE DESIGN (OUTPUT)
	4.1 General Software Design Requirements
	4.2 Software System Architectural Design
	4.3 Software Requirements Specification (SWRS)
	4.4 Software Architectural Design
	4.5 Software Detail Design
	4.6 Software System Hazard Analysis and Mitigation
	4.7 Software Design Traceability and Testability
	4.8 Operations and Maintenance (O&M) Instructions
	4.9 SOFT-GEN Requirements and Deliverables
	5.0 SSC SOFTWARE COMPUTER PROGRAM LANGUAGE (CODE)
	6.0 NON-SSC SOFTWARE DESIGN REQUIREMENTS (INPUT)
	7.0 NON-SSC SOFTWARE DESIGN (OUTPUT)
	8.0 NON-SSC SOFTWARE PROGRAM LANGUAGE (CODE)

